Math 4650
Topic 2a - Application to calculating square roots

## Application to finding square roots

Theorem: Let a 70 be a real number.

Define the sequence:

$$a_1 = any positive real number$$

$$a_{n+1} = \frac{1}{2} \left( a_n + \frac{a_n}{a_n} \right) \quad \text{for } n \ge 1$$

Note: Newton's method

(3) 
$$|a_n - \sqrt{a}| \le \frac{a_n^2 - a}{a_n}$$
 when  $n \ge 2$  bound

Proof:

We are given a, >0 and a>0

Assume ax70. Then,  $a_{k+1} = \frac{1}{2} \left( a_k + \frac{a}{a_k} \right) > 0$ 

By induction, and o for all n.

Fact (ii): an > Ja for n>2 By def we have  $2a_{n+1} = a_n + \frac{a}{a_n}$ . Let n71. Thus,  $x^2 - 2a_{n+1}x + a = 0$  has a real root  $(x = a_n)$ . So, the discriminant must be non-negative. That is, 4a2,-4a >0. Thus, anti > Ja for n>1. We used fact (i) here also. Fact (ii): 9, 20 Fact (iii): an > anti for n>2 Let n>2  $a_n - a_{n+1} = a_n - \frac{1}{2}a_n - \frac{1}{2}\frac{a_n}{a_n} = \frac{1}{2}\left(\frac{a_n^2 - a_n}{a_n}\right) \ge 0$ Then,

Now we use the above to prove (1)

We have shown that  $a_2 > a_3 > a_4 > a_5 > \cdots > a_7 > 0$   $a_2 > a_3 > a_4 > a_5 > \cdots > a_7 > 0$ By the monotone convergence theorem,  $a_1 > a_2 > a_3 > a_4 > a_5 > \cdots > a_7 > 0$ 

Thus, an 3 anxi

2 Let 
$$L = \lim_{n \to \infty} a_n$$
.  
We know  $a_{n+1} = \frac{1}{2} \left( a_n + \frac{a_n}{a_n} \right)$  for  $n \ge 1$ .

Taking the limit of both sides gives

S, 
$$L^2 = \alpha$$
.

This is from  $H\omega 2$ .

If  $\lim_{n \to \infty} x_n = L$  where  $\lim_{n \to \infty} x_n > 0$  for all  $n$ ,

we must have  $L = \sqrt{\alpha}$ . This is from  $H\omega 2$ .

If  $\lim_{n \to \infty} x_n = L$  where  $\lim_{n \to \infty} x_n > 0$  for all  $n$ ,

then  $L > 0$ .

(3) Let n > 2.

fact (ii)
above
$$So, an? \frac{a}{\sqrt{a}}$$
Thus,  $\sqrt{a} \ge a/an$ 

Thus,

$$0 \le \alpha_n - \sqrt{\alpha} \le \alpha_n - \frac{\alpha}{\alpha_n} = \frac{\alpha_n^2 - \alpha}{\alpha_n}$$

So, 
$$|\alpha_n - \sqrt{\alpha}| \leq \frac{\alpha_n^2 - \alpha}{\alpha_n}$$



Ex: Let's approximate  $\sqrt{2}$ . Here  $\alpha = 2$ . Set  $\alpha_1 = 1 > 0$ ' We have:

| $\boxed{Q_{n+1} = \frac{1}{2} \left( Q_n + \frac{Z}{Q_n} \right)}$                                                           | Ellor bound $\frac{a_n^2 - a}{a_n}$                                                                |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| $\alpha_{2} = \frac{1}{2}(1+\frac{1}{2}) = \frac{3}{2} = 1.5$                                                                | $\frac{\alpha_2^2 - 2}{\alpha_2} = \frac{1.5^2 - 2}{1.5} \approx 0.1666$                           |
| $Q_3 = \frac{1}{2} \left( \frac{3}{2} + \frac{2}{(3/2)} \right) = \frac{17}{12}$                                             | $\frac{a_3^2 - 2}{a_3} = \frac{1}{204} \approx 0.00490196$                                         |
| ≈ 1,416666                                                                                                                   | ,                                                                                                  |
| $a_{4} = \frac{1}{2} \left( \frac{17}{12} + \frac{2}{17/12} \right) = \frac{577}{408}$ $\approx 1.414215686$                 | $\frac{a_{Y}^{2}-2}{a_{Y}}=\frac{1}{235,416}$ $\approx 0,0000424779\%$                             |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                       | ,                                                                                                  |
| $\alpha_{s} = \frac{1}{2} \left( \frac{577}{408} + \frac{2}{577/408} \right)$ $= \frac{665857}{470832} \approx 1.4142135623$ | $\frac{\alpha_{s}^{2-2}}{\alpha_{s}} = \frac{1}{313,506,783,024}$ $\approx 3.1897 \times 10^{-12}$ |
|                                                                                                                              |                                                                                                    |

We get rapid convergence here.